本发明属于废水处理领域,具体涉及一种电脱氯和化学脱氯耦合技术处理有机氯废水的系统。
背景技术:
有机氯化物是水中重要的污染物质,目前水体中常见的有机氯化物污染物质有氯代芳烃类的有机氯农药,如ddt、氯苯等,化工产品如多氯联苯,化学品燃烧形成的二恶英;氯代脂肪烃类,如四氯化碳、氯乙烯等。
有机氯化物污染物多数为人工合成化合物,化学性质相对稳定,具有较高的辛醇/水分配系数,容易在生物体、土壤和沉积物的有机质中累积,其上氯原子的存在对微生物具有毒性,所以在自然界中降解缓慢,环境危害周期长,如多氯联苯的半衰期长达近百年。另外,许多有机氯化物被认为具有“致癌、致畸形、致突变”效应;同时,由于很多有机氯化物具有高挥发性和类脂物可溶性,易被皮肤、粘膜等吸收而对人体造成严重损害。
人们研究了多种处理氯代有机污染物的方法,大致可分为物理法、生物法和化学法。其中,大量利用零价金属降解有机卤化物的研究,包括降解性能、反应动力学、影响因素、应用实验等均已广泛展开。cn109851113a公开了一种降解高浓度有机氯废水的方法及系统,该方法以低温蒸发和紫外灯光催化为主体,先对低沸点含氯有机物进行蒸馏,将其从废水中分离出来,随后对高沸点含氯有机物进行光催化处理,将余氯还原成氯离子,以达到去除废水中的有机氯的目的,但是该方法采用紫外催化过程中,并未针对有机氯的氯代基团进行分别处理,这样导致有机氯脱氯效率较低;专利cn2015201982549中公开了一种甲烷氯化物有机氯废水处理系统,采用双氧水催化氧化—絮凝法处理甲烷氯化物有机氯废水,不仅使有机氯污水达标排放,而且双氧水使用后不产生二次污染。但有机氯仅仅是通过絮凝方式沉降,并未实现有机氯的脱氯。
技术实现要素:
本发明的目的是提供一种电脱氯和化学脱氯耦合技术处理有机氯废水的系统,通过电脱氯与化学脱氯技术联用更好地处理有机氯废水,并通过超滤单元和结晶单元的设置实现废水的资源化回用。
为了解决上述技术问题,本发明公开了一种电脱氯和化学脱氯耦合技术处理有机氯废水的系统,包括依次设置的电脱氯单元、一次超滤、铁碳脱氯单元、二次超滤、氧化单元、絮凝单元、吸附单元、焚烧单元,吸附单元出水外排,所述一次超滤所得浓缩液输送至所述铁碳脱氯单元,所述二次超滤所得浓缩液输送至所述氧化单元,所述脱氯单元包括阴极室(1)、隔膜(2)、阳极室(3),所述阴极室(1)中设置阴极(11)、脱氯水出口(12)、进水口(13)及脱氯填料(14),所述隔膜(2)设置在所述阴极室(1)和阳极室(3)之间,所述阳极室(3)设置阳极(31)、阳极室进水口(32)、阳极室出水口(33),所述脱氯水出口(12)连接所述一次超滤,所述一次超滤所得透过液出口连接结晶单元和所述阳极室进水口(32),所述氧化单元为fenton单元,所述一次超滤和所述二次超滤透过液输送至结晶单元,所述阳极室出水口连接所述结晶单元。
进一步地,所述脱氯填料为cu/fe/ag复合金属粉末,所述cu:fe:ag质量比例为1-5:25-50:0.5-1;所述铁碳脱氯单元中设置有一体成型的pd/fe/c填料,所述pd/fe/c质量比为2-5:30-50:20-30,所述电脱氯单元中还填充有活性炭,所述活性炭与所述cu/fe/ag复合金属粉末质量比例为10-20:5-50,所述电脱氯单元中的阴极室内还设置超声波发生器,所述超声波频率为22-28khz,声强为35-45w/cm2;
进一步地,所述电脱氯单元前还设置有预处理单元;
进一步地,所述预处理单元包括格栅、气浮池、隔油池中的一种或多种;
进一步地,所述絮凝单元投加活性炭和/或聚丙烯酰胺;
进一步地,所述吸附单元投加干污泥、活性炭、秸秆颗粒中的一种或多种;
进一步地,所述吸附单元沉渣脱水后输送至焚烧单元焚烧;
进一步地,所述电脱氯单元水力停留时间10-15min;
进一步地,所述铁碳脱氯单元水力停留时间25-35min;
进一步地,所述阴极和阳极间歇性通电。
本发明的有益效果:
1、本申请设置电脱氯单元和铁碳脱氯单元将电脱氯和化学脱氯技术耦合用于脱氯,废水在阴极室在cu/fe/ag复合金属粉末和活性炭的配合下,发生阴极还原、金属还原、吸附、fe/c内电解、fe2+阴极还原等一系列综合作用对高氯有机物进行脱氯反应,铁碳脱氯单元设置pd/fe/c填料,该填料在pd的作用下,对于脱氯后的氯代程度低的有机物进行高效脱氯,两者相互配合能够将废水中的有机氯更为彻底去除。
2、本申请设置两级超滤处理,对经过电脱氯单元和铁碳脱氯单元脱氯处理后废水中的氯离子进行分离,由于在过多氯离子存在的情况下,会影响后续铁碳填料板结和氧化单元的处理效果,另外,通过超滤设置将氯离子进行分离的同时也将有机物进行浓缩,既提高污染物浓度,降低后续处理量,又可以降低氯离子浓度,提高后续处理效果。
3、本申请设置氧化单元,由于有机氯废水中成分复杂,在经过两级脱氯和两次超滤后的废水中还存在部分难降解有机物,设置fenton氧化处理将剩余部分有机物氧化,且在废水中存在铁絮体,含铁絮体的废水进入到絮凝单元、吸附单元将废水中残留的有机物吸附在吸附介质上,进行燃烧,可以提高燃烧热值的同时,满足排放标准。
4、电脱氯单元间歇性通电过程,使得脱氯填料的化学反应与电还原交替进行。
5、一次超滤透过液进入阳极室,其中分离得到的氯离子会在阳极发生氧化反应生成氯气或次氯酸等氧化剂对废水中的有机物进行氧化处理。
6、将一次和二次超滤透过液送入结晶单元得到回收盐,实现了有机氯废水的资源化处理。
附图说明
图1为一种电脱氯和化学脱氯耦合技术处理有机氯废水的系统示意图;
图2为电脱氯单元示意图。
具体实施方式
下面通过实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”,“包含”以及“包括”术语并不排除一个或多个其它元件或其组合的存在或添加。
参考图1和图2所示,本发明的实施例公开了一种电脱氯和化学脱氯耦合技术处理有机氯废水的系统,包括依次设置的电脱氯单元、一次超滤、铁碳脱氯单元、二次超滤、氧化单元、絮凝单元、吸附单元、焚烧单元,吸附单元出水外排。所述一次超滤浓缩液输送至所述铁碳脱氯单元,所述二次超滤的浓缩液输送至所述氧化单元。所述脱氯单元包括阴极室1、隔膜2、阳极室3,所述阴极室1中设置阴极11、脱氯水出口12、进水口13及脱氯填料14,所述隔膜2设置在所述阴极室1和阳极室3之间,所述阳极室3设置阳极31、阳极室进水口32、阳极室出水口33,所述脱氯单元电流密度为10-30ma/cm2,所述脱氯填料为cu/fe/ag复合金属粉末,所述cu:fe:ag质量比例为1-5:25-50:0.5-1;所述脱氯水出口12连接所述一次超滤,所述一次超滤设置浓缩液出口和透过液出口,所述浓缩液出口连通所述铁碳脱氯单元,所述透过液出口连接所述结晶单元和所述阳极室进水口32,所述氧化单元为fenton单元,所述铁碳单元中设置有pd/fe/c填料,所述pd/fe/c质量比例为2-5:30-50:20-30。
实施例1
经预处理后的有机氯废水含四氯化碳89mg/l;
所述有机氯废水经电脱氯单元处理,电流密度为20ma/cm2,水力停留时间12min,四氯化碳浓度降低至1.6mg/l;经初一次超滤浓缩后的有机氯化合物浓度为119.8mg/l,进入铁碳脱氯单元处理,水力停留时间30min后有机氯浓度降低至1.9mg/l,继续二次超滤浓缩后输送至氧化单元对有机氯废水进行氧化处理,氧化单元处理后出水有机氯浓度为0.53mg/l,后续经过絮凝单元、吸附单元处理后,将吸附单元和絮凝单元的沉渣脱水处理后送入焚烧单元,焚烧单元烟气和/不凝物中未检出有机氯污染物。
实施例2
经预处理后的有机氯废水含四氯化碳89mg/l;
所述有机氯废水经电脱氯单元处理,电流密度为20ma/cm2,开启超声处理装置超声波频率在25khz,声强在35w/cm2,水力停留时间12min,四氯化碳浓度降低至0.72mg/l;经一次超滤浓缩后的有机氯化合物浓度为91.2mg/l,进入铁碳脱氯单元处理,水力停留时间30min后有机氯浓度降低至1.4mg/l,继续二次超滤浓缩后输送至氧化单元对有机氯废水进行氧化处理,氧化单元处理后出水有机氯浓度为0.21mg/l,后续经过絮凝单元、吸附单元处理后,将吸附单元和絮凝单元的沉渣脱水处理后送入焚烧单元,焚烧单元烟气和/不凝物中未检出有机氯污染物。
实施例3
经预处理(气浮、隔油)后的浓缩医疗有机氯废水含有机氯浓度为0.63wt%;
所述有机氯废水经电脱氯单元处理,电流密度为10ma/cm2,超声波频率在25khz,声强在35w/cm2,水力停留时间12min;经一次超滤浓缩后的有机氯化合物浓度为1.12wt%,进入铁碳脱氯单元处理,水力停留时间23min后有机氯浓度降低至0.02wt%,继续二次超滤浓缩后输送至氧化单元对有机氯废水进行氧化处理,氧化单元处理后出水有机氯浓度为0.009wt%,后续经过絮凝单元、吸附单元处理后,将吸附单元和絮凝单元的沉渣脱水处理后送入焚烧单元,焚烧单元烟气和/不凝物中未检出有机氯污染物。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的实施例。