简介
随着OEM开发的高级平台的自动化和连通性水平不断提高,各领域的车辆复杂性都在增长。为了应对这种日益增长的复杂性,汽车、航空航天和商用车辆OEM必须发展架构设计流程,以利用MBSE和数字化流程。当今的E/E系统工程解决方案通过提供稳健的数据连续性、高级自动化能力、闭环验证和设计优化来帮助公司实现MBSE。借助此类解决方案,工程师可以使用现有功能模型来生成车辆架构和更详细的系统设计,并持续从上游流程扩充数据,以确保从功能到实现以及实际组件或系统的可追溯性。这种可追溯性对于证明高级车辆平台的合规性和安全性至关重要。
随着车辆技术朝着更高水平的自主性和连通性方向发展,汽车、航空航天和重型/非公路车辆行业的原始设备制造商(OEM)开始面临共同的挑战(图1)。人们希望这些先进技术能够改善乘用车、飞机、农业和其他重型设备的安全性、生产率及能力。然而,支持这些技术需要复杂的电气、电子和机电系统,这促使所有领域的车辆复杂性急剧提高。
到目前为止,车辆的架构演变是由对更好的车辆功能、新型且更高级的特性的需求驱动的。例如,考虑过去20年中汽车电气电子(E/E)架构的演变。以前,车辆架构由几十个通过低带宽网络和低保真度信号连接的ECU组成。这些架构支持车辆的基本特性和功能,例如立体声音响、电动车窗、巡航控制和防抱死制动系统。相比之下,现代中档汽车包含约90个ECU,这些ECU通过各种高速和低速网络连接到数十个传感器和执行器。这种现代架构在规模和复杂性方面有很大的增长,目的是支持新特性,例如先进驾驶辅助系统(ADAS)、高级信息娱乐系统、导航等。
现在,更高级的车辆自动化、电气化和连接系统正在推动车辆OEM厂商将新技术整合到车辆中。其中特别值得注意的是,制造商正在尝试整合新的通信技术,以便将车辆连接到5G网络、WiFi并实现“车辆到一切”(V2X)的通信。利用这些通信技术,OEM将能对车辆软件进行空中更新(OTA),这样哪怕车辆已售出,也能解锁更多功能。但是,车辆架构中也需要额外的基础设施来保障安全,防范来自车辆外部及其所连接的网络的安全威胁。随着车辆自动化程度的提高,这一点尤其重要。